Extended canonical ideals and Goto rings

Naoki Endo

School of Political Science and Economics, Meiji University

The 45th Japan Symposium on Commutative Algebra

November 22, 2024

Introduction

Question 1.1

Why are there so many Cohen-Macaulay rings which are not Gorenstein?

Problem 1.2

Find new and interesting classes of rings which fill in a gap between Gorenstein and Cohen-Macaulay rings, so as to stratify Cohen-Macaulay rings.

Problem 1.3

Find new classes of CM rings which may not be Gorenstein, but sufficiently good next to Gorenstein rings.

Almost Gorenstein rings

- [Barucci-Fröberg, 1997]
 - ··· one-dimensional analytically unramified local rings
- [Goto-Matsuoka-Phuong, 2013]
 - ··· one-dimensional CM local rings
- [Goto-Takahashi-Taniguchi, 2015]
 - ··· higher-dimensional CM local/graded rings

Generalization of AGL rings

- 2-almost Gorenstein local rings (Chau-Goto-Kumashiro-Matsuoka)
- Generalized Gorenstein local rings (Goto-Kumashiro)

Question 1.4

Can we construct a new theory that can be understood AGL, 2-AGL and GGL rings in a unified manner?

Extended canonical ideals

- (A, \mathfrak{m}) a CM local ring with $d = \dim A > 0, \exists K_A, and |A/\mathfrak{m}| = \infty$
- I ⊊ A an ideal of A s.t. I ≅ K_A

Recall that \exists a canonical ideal $\iff A_p$ is Gorenstein for $\forall p \in Min A$. For ideals J and Q with $Q \subset J$,

- Q is a reduction of J, if $J^{r+1} = QJ^r$ for $\exists r > 0$
- $\operatorname{red}_Q(J) = \min\{r \ge 0 \mid J^{r+1} = QJ^r\}.$

Definition 2.1

- (1) A parameter ideal $Q = (a_1, a_2, ..., a_d)$ of A satisfies the condition (\sharp), if $a_1 \in I$ and Q is a reduction of Q + I.
- (2) An ideal J is called an extended canonical ideal of A, if J = I + Q for some parameter ideal $Q = (a_1, a_2, ..., a_d)$ satisfying (\sharp).

Example 2.2

Let k be a field. For any $\ell \geq 3$, $m \geq n \geq 2$, let

- $A = k[[X_1, X_2, \dots, X_{\ell}, V_1, V_2, \dots, V_{\ell-1}]]/I_2 \begin{pmatrix} X_1^n & X_2 + V_1 & \dots & X_{\ell-1} + V_{\ell-2} & X_{\ell} + V_{\ell-1} \\ X_2 & X_3 & \dots & X_{\ell} & X_1^m \end{pmatrix}$
- $I = (X_1^n, X_2, ..., X_{\ell-1})A$
- $Q = (X_1^n, V_1, \dots, V_{\ell-1})A.$

Then A is a CM local ring admitting the extended canonical ideal J = I + Q.

- When d = 1, extended canonical ideals = canonical ideals.
- When $d \ge 2$, JA' is a canonical ideal of $A' = A/(a_2, a_3, \dots, a_d)$.
- An extended canonical ideal exists.

There exist integers $\{e_i(J)\}_{0 \le i \le d}$ s.t.

$$\ell_A(A/J^{n+1}) = \mathsf{e}_0(J)\binom{n+d}{d} - \mathsf{e}_1(J)\binom{n+d-1}{d-1} + \dots + (-1)^d \mathsf{e}_d(J) \text{ for } \forall n \gg 0.$$

•
$$e_1(J) \ge e_0(J) - \ell_A(A/J)$$

•
$$e_1(J) = e_0(J) - \ell_A(A/J) \iff J^2 = QJ.$$

When this is the case,

(1) $\operatorname{gr}_{J}(A) = \bigoplus_{i \ge 0} J^{i}/J^{i+1}$ and $\mathcal{F}(J) = \bigoplus_{i \ge 0} J^{i}/\mathfrak{m}J^{i}$ are CM (2) $\mathcal{R}(J) = \bigoplus_{i \ge 0} J^{i}$ is CM, if $d \ge 2$.

- Sally characterized J with $e_1(J) = e_0(J) \ell_A(A/J) + 1$ and $e_2(J) \neq 0$.
- Vasconcelos introduced $S_Q(J) = \bigoplus_{i \ge 1} J^{i+1}/JQ^i$, recovered Sally's results, and made further progress, e.g.,

$$\operatorname{rank} \mathcal{S}_Q(J) = \operatorname{e}_1(J) - \operatorname{e}_0(J) + \ell_A(A/J).$$

• Goto, Nishida, and Ozeki established the theory of rank $S_Q(J) = 1$.

Whereas they considered any m-primary ideals, we focus on extended canonical ideals and raise the rank of the Sally modules.

Goto rings

- (A, \mathfrak{m}) a CM local ring with $d = \dim A > 0$, $\exists K_A$, and $|A/\mathfrak{m}| = \infty$
- $I \subsetneq A$ an ideal of A s.t. $I \cong K_A$, and $n \ge 0$ an integer

Definition 3.1

Let $Q = (a_1, a_2, ..., a_d)$ be a parameter ideal of A. We say that A is an *n*-Goto ring with respect to Q, if

$$a_1 \in I$$
, $J^3 = QJ^2$, and $\ell_A(J^2/QJ) = n$

where J = I + Q. The ring A is called *n*-Goto, if \exists a parameter ideal Q of A s.t. A is *n*-Goto with respect to Q.

- A is 0-Goto \iff A is Gorenstein
- A is 1-Goto \iff A is non-Gorenstein AGL
- A is 2-Goto \iff A is 2-AGL, provided d = 1

• A is $\ell_A(A/\mathfrak{a})$ -Goto \iff A is GGL with respect to \mathfrak{a} , where $\sqrt{\mathfrak{a}} = \mathfrak{m}$.

Example 3.2

Let k be a field.

- (1) $k[[t^3, t^{3n+1}, t^{3n+2}]]$ is *n*-Goto and is an integral domain.
- (2) $k[[t^3, t^{3n+1}, t^{3n+2}]] \times_k k[[t]]$ is *n*-Goto, reduced, but not an integral domain.
- (3) $k[[t^3, t^{3n+1}, t^{3n+2}]] \ltimes k[[t]]$ is *n*-Goto and is not reduced.

Recall that $x \in J$ is super-regular, if $xt \in \mathcal{R}(J)$ is a NZD on $gr_J(A)$.

Theorem 3.3

Suppose that $d \ge 2$. Let J = I + Q be an extended canonical ideal of A and set $q = (a_2, a_3, \dots, a_d)$. Let $x \in q \setminus mq$ be super-regular. Then TFAE.

- (1) A is an n-Goro ring with respect to Q.
- (2) A/(x) is an n-Goto ring with respect to Q/(x).

Example 3.4

Let k be a field. For any $\ell \geq 3$, $m \geq n \geq 2$,

 $A = k[[X_1, X_2, \dots, X_{\ell}, V_1, V_2, \dots, V_{\ell-1}]] / I_2 \begin{pmatrix} X_1^n & X_2 + V_1 & \dots & X_{\ell-1} + V_{\ell-2} & X_{\ell} + V_{\ell-1} \\ X_2 & X_3 & \dots & X_{\ell} & X_1^m \end{pmatrix}$

is an *n*-Goto ring with dim $A = \ell$ and $r(A) = \ell - 1$.

•
$$(A_1, \mathfrak{m}_1)$$
 a CM local ring with dim $A_1 = d$

- $\varphi: A \rightarrow A_1$ a flat local map s.t. $A_1/\mathfrak{m}A_1$ is Gorenstein
- Q a parameter ideal of A with (\$)

Then IA_1 is a canonical ideal of A_1 and QA_1 is a parameter ideal of A_1 with (\sharp) .

Theorem 3.5

TFAE.

(1) A_1 is n-Goto with respect to QA_1 .

(2) $\exists m > 0$ s.t. $m \mid n, A$ is m-Goto with respect to Q, and $\ell_{A_1}(A_1/\mathfrak{m}A_1) = \frac{n}{m}$.

Example 3.6 (cf. Chau-Goto-Kumashiro-Matsuoka)

Let
$$A_1 = A[X]/(X^n + \alpha_1 X^{n-1} + \cdots + \alpha_n)$$
 $(n \ge 1, \alpha_i \in \mathfrak{m})$. Then

- A_1 is a flat local A-algebra with $\mathfrak{m}_1 = \mathfrak{m}A_1 + XA_1$
- $A_1/\mathfrak{m}A_1 = (A/\mathfrak{m})[X]/(X^n)$ is an Artinian Gorenstein ring
- $\ell_{A_1}(A_1/\mathfrak{m}A_1) = n.$

Hence, if $n \ge 2$ is a prime integer, then

 A_1 is *n*-Goto with respect to $QA_1 \iff A$ is non-Gorenstein AGL

where Q is a parameter ideal of A with (\sharp) .

One-dimensional Goto rings

- (R, \mathfrak{m}) a CM local ring with dim R = 1, $\exists K_R$, and $|R/\mathfrak{m}| = \infty$
- I a canonical ideal of R, $n \ge 0$ an integer
- Q = (a) a parameter ideal of R s.t. Q is a reduction of I

•
$$K = \frac{I}{a} = \left\{\frac{x}{a} \mid x \in I\right\} \subseteq \mathbb{Q}(R)$$

- $K \cong K_R$ and $R \subseteq K \subseteq \overline{R} \subseteq Q(R)$
- *R* is *n*-Goto $\iff K^3 = K^2$ and $\ell_R(K^2/K) = n$

Example 4.1

The ring $R = k[[H]] = k[[t^h | h \in H]] (\subseteq k[[t]])$ is an *n*-Goto ring, where

•
$$H = \langle 3, 3n+1, 3n+2 \rangle$$
 $(n \ge 1)$

• $H = \langle e, \{en - e + i\}_{3 \le i \le e-1}, en + 1, en + 2 \rangle \ (n \ge 2, e \ge 4).$

We set $R^{I} = \bigcup_{n>0} [I^{n} : I^{n}]$ for a regular ideal I of R.

Theorem 4.2

Suppose that R has minimal multiplicity, $R^{\mathfrak{m}}$ is a local ring, and $R/\mathfrak{m} \cong R^{\mathfrak{m}}/\mathfrak{n}$, where \mathfrak{n} denotes the maximal ideal of $R^{\mathfrak{m}}$. Then TFAE for $n \ge 1$.

- (1) R is an n-Goto ring
- (2) $R^{\mathfrak{m}}$ is an (n-1)-Goto ring.

Example 4.3

Let k be a field. Then

•
$$R = k[[t^5, t^{13}, t^{14}, t^{16}, t^{17}]]$$
 is 3-Goto.

•
$$R_1 = R^{\mathfrak{m}} = \bigcup_{n \ge 0} [\mathfrak{m}^n : \mathfrak{m}^n] = \mathfrak{m} : \mathfrak{m} = k[[t^5, t^8, t^9, t^{11}, t^{12}]]$$
 is 2-Goto.

•
$$R_2 = (R_1)^{\mathfrak{m}_1} = \bigcup_{n \ge 0} [\mathfrak{m}_1^n : \mathfrak{m}_1^n] = \mathfrak{m}_1 : \mathfrak{m}_1 = k[[t^3, t^4, t^5]]$$
 is 1-Goto.

• $R_3 = (R_2)^{\mathfrak{m}_2} = \bigcup_{n \ge 0} [\mathfrak{m}_2^n : \mathfrak{m}_2^n] = \mathfrak{m}_2 : \mathfrak{m}_2 = k[[t]] = \overline{R}$ is 0-Goto.

- (S, \mathfrak{n}) a CM local ring with dim S = 1 and $k = R/\mathfrak{m} = S/\mathfrak{n}$
- $f: R \rightarrow k, g: S \rightarrow k$ canonical maps
- $R \times_k S = \{(a, b) \in R \times S \mid f(a) = g(b)\} \subseteq R \times S$

Then $R \times_k S$ is a CM local ring with dim $(R \times_k S) = 1$. Moreover

 $R \times_k S$ is Gorenstein $\iff R$ and S are DVRs.

Theorem 4.4

Suppose that $\exists K_{(R \times_k S)}$ and $Q(R \times_k S)$ is Gorenstein. Then TFAE for $n \ge 2$.

(1) $R \times_k S$ is an n-Goto ring.

(2) One of the following conditions holds.

- (i) R is Gorenstein and S is n-Goto.
- (ii) R is n-Goto and S is Gorenstein.
- (iii) R is p-Goto and S is q-Goto for $\exists p, q > 0$ s.t. n + 1 = p + q.

Hence, if R is n-Goto and S is 2-Goto, then $R \times_k S$ is (n+1)-Goto.

Recall that R is n-Goto $\iff K^2 = K^3$ and $\ell_R(K^2/K) = n$.

Lemma 4.5 Suppose r(R) = 2. For each $n \ge 1$, we have R is n-Goto $\iff K^2 = K^3$ and $\ell_R(K/R) = n$.

•
$$R = k[[t^{a_1}, t^{a_2}, t^{a_3}]]$$
, where $0 < a_1, a_2, a_3 \in \mathbb{Z}$ s.t. $gcd(a_1, a_2, a_3) = 1$

R is not a Gorenstein ring

•
$$\varphi: k[[X, Y, Z]] \rightarrow R$$
 the k-algebra map s.t.

$$\varphi(X) = t^{a_1}, \ \varphi(Y) = t^{a_2}, \ \text{and} \ \varphi(Z) = t^{a_3}$$

Then

$$\mathsf{Ker}\, \varphi = \mathrm{I}_2 \left(\begin{smallmatrix} \chi^\alpha & Y^\beta & Z^\gamma \\ Y^{\beta'} & Z^{\gamma'} & X^{\alpha'} \end{smallmatrix} \right) \ \, \mathsf{for} \ \, \exists\, \alpha,\beta,\gamma,\alpha',\beta',\gamma'>0.$$

By setting $\mathbf{b} = \mathbf{a}_1 \alpha - \mathbf{a}_2 \beta'$ (= $\mathbf{a}_2 \beta - \mathbf{a}_3 \gamma' = \mathbf{a}_3 \gamma - \mathbf{a}_1 \alpha'$), we get

$$\ell_{R}(K/R) = \left\{egin{array}{cc} lphaeta\gamma & (b<0)\ lpha'eta'\gamma' & (b>0) \end{array}
ight.$$

Theorem 4.6

Suppose that *R* is not Gorenstein. Then TFAE for $n \ge 1$, where $H = \langle a_1, a_2, a_3 \rangle$.

(1) R = k[[H]] is an n-Goto ring.

(2) $3 \cdot |b| \in H$, and $n = \alpha \beta \gamma$ (resp. $n = \alpha' \beta' \gamma'$) if b < 0 (resp. b > 0).

Example 4.7

Let $R = k[[t^7, t^{10}, t^{22}]]$. The k-algebra map $\varphi : k[[X, Y, Z]] \rightarrow R$ defined by

$$arphi(X)=t^{10}, \ arphi(Y)=t^7, \ ext{and} \ arphi(Z)=t^{22}$$

induces

$$R \cong k[[X, Y, Z]]/\mathrm{I}_2\left(\begin{smallmatrix} X^2 & Y^2 & Z \\ Y^4 & Z & X^3 \end{smallmatrix}\right).$$

Then $b = a_1 \alpha - a_2 \beta' = 10 \cdot 2 - 7 \cdot 4 = -8 < 0$. Hence, $3 \cdot |b| = 24 \in H$ and

$$\ell_R(K/R) = 2 \cdot 2 \cdot 1 = 4,$$

so that R is a 4-Goto ring.

Corollary 4.8

Suppose that e(R) = 3 and R has minimal multiplicity. Then TFAE for $n \ge 1$, where $H = \langle a_1, a_2, a_3 \rangle$.

(1)
$$R = k[[H]]$$
 is an n-Goto ring.

(2)
$$H = \langle 3, 2n + \alpha, n + 2\alpha \rangle$$
 for $\exists \alpha \ge n + 1$ s.t. $\alpha \not\equiv n \mod 3$.

When this is the case,

 $R \cong k[[X, Y, Z]]/\mathrm{I}_2\left(\begin{smallmatrix} X^n & Y & Z \\ Y & Z & X^n \end{smallmatrix}\right) \quad \text{or} \quad R \cong k[[X, Y, Z]]/\mathrm{I}_2\left(\begin{smallmatrix} X^n & Y & Z \\ Y & Z & X^n \end{smallmatrix}\right).$

Minimal free resolutions

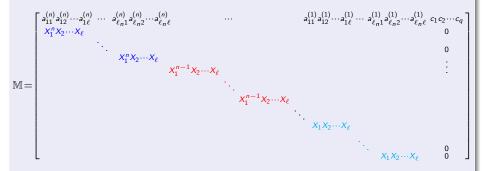
- (T, \mathfrak{n}) a RLR with dim $T = \ell \geq 3$, $\mathfrak{a} \subsetneq T$ an ideal of T s.t. $\mathfrak{a} \subseteq \mathfrak{n}^2$, $n \geq 2$
- $R = T/\mathfrak{a}$ is a CM local ring with dim R = 1, $\mathfrak{m} = \mathfrak{n}/\mathfrak{a}$
- K a fractional canonical ideal of R, c = R : R[K]

Suppose R is an *n*-Goto ring and $v(R/\mathfrak{c}) = 1$. As $\ell_R(R/\mathfrak{c}) = \ell_R(K^2/K) = n$,

 $\exists x_1, x_2, \dots, x_\ell \in \mathfrak{m} \text{ s.t. } \mathfrak{m} = (x_1, x_2, \dots, x_\ell) \text{ and } \mathfrak{c} = (x_1^n, x_2, \dots, x_\ell).$ By setting $I_i = (x_1^i, x_2, \dots, x_\ell)$ $(1 \le i \le n)$, we have $R : K = \mathfrak{c} = I_n \subsetneq I_{n-1} \subsetneq \dots \subsetneq I_1 = \mathfrak{m} \text{ and}$ $K/R \cong \bigoplus_{i=1}^n (R/I_i)^{\oplus \ell_i} \text{ for } \exists \ell_n > 0, \exists \ell_i \ge 0 \text{ } (1 \le i \le n-1).$ Write $K = R + \sum_{i=1}^n \sum_{j=1}^{\ell_i} R \cdot f_{ij}$ s.t. $(R/I_i)^{\oplus \ell_i} \cong \sum_{j=1}^{\ell_i} (R/\mathfrak{c}) \cdot \overline{f_{ij}}$ in K/R. Choose $X_i \in \mathfrak{n}$ s.t. $x_i = \overline{X_i}$ in R.

Theorem 5.1

If $R = T/\mathfrak{a}$ is n-Goto and $v(R/\mathfrak{c}) = 1$, then $F_1 \xrightarrow{\mathbb{M}} F_0 \xrightarrow{\mathbb{N}} K \to 0$ gives a minimal free presentation of K, where $\mathbb{N} = \begin{bmatrix} -1 & f_{n_1} \cdots f_{n_{\ell_n}} & f_{n-1,1} \cdots f_{n-1,\ell_{n-1}} & \cdots & f_{n_1} \cdots f_{n_{\ell_1}} \end{bmatrix}$ and



Moreover, one has

$$\mathfrak{a} = \sum_{i=1}^{n} \sum_{j=1}^{\ell_i} I_2 \begin{pmatrix} a_{j_1}^{(i)} & a_{j_2}^{(i)} & \cdots & a_{j_\ell}^{(i)} \\ X_1^i & X_2 & \cdots & X_\ell \end{pmatrix} + (c_1, c_2, \dots, c_q).$$

Example 5.2

Let $\varphi : T = k[[X, Y, Z, W]] \rightarrow R = k[[t^4, t^{11}, t^{13}, t^{14}]]$ be the k-algebra map s.t.

$$arphi(X)=t^4,\;arphi(Y)=t^{11},\;arphi(Z)=t^{13}, ext{ and }arphi(W)=t^{14},$$

Then $K = R + Rt + Rt^3$ is a fractional canonical ideal of R. Hence, $K^2 = K^3$ and $\ell_R(K^2/K) = 3$, so that R is a 3-Goto ring.

The minimal free presentation of K is given by $F_1 \xrightarrow{\mathbb{M}} F_0 \longrightarrow K \longrightarrow 0$, where

$$\mathbb{M} = \begin{bmatrix} Z & -X^3 & -W & -XY & Y & W & X^4 & XZ \\ X^3 & Y & Z & W & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & X^2 & Y & Z & W \end{bmatrix}$$

Hence

$$\operatorname{\mathsf{Ker}} \varphi = \operatorname{I}_2 \left(\begin{smallmatrix} Z & -X^3 & -W & -XY \\ X^3 & Y & Z & W \end{smallmatrix} \right) + \operatorname{I}_2 \left(\begin{smallmatrix} Y & W & X^4 & XZ \\ X^2 & Y & Z & W \end{smallmatrix} \right).$$

Theorem 5.3

Let $X_1, X_2, \ldots, X_\ell \in \mathfrak{n}$ be a regular sop of T and assume K has a presentation of the form

$$F_1 \stackrel{\mathbb{M}}{\longrightarrow} F_0 \stackrel{\mathbb{N}}{\longrightarrow} K \longrightarrow 0$$

where \mathbb{M} and \mathbb{N} are the matrices of the form stated in Theorem 5.1, satisfying

•
$$a_{ij}^{(n)} \in J_n \ (1 \le i \le \ell_n, \ 1 \le j \le \ell)$$

• $a_{ij}^{(k)} \in J_n \ (1 \le k \le n - 1, \ 1 \le i \le \ell_k, \ 2 \le j \le \ell)$
• $a_{i1}^{(k)} \in J_k \ (1 \le k \le n - 1, \ 1 \le i \le \ell_k)$
where $J_i = (X_1^i, X_2, \dots, X_\ell) \ (1 \le i \le n)$. Then R is n -Goto and $v(R/\mathfrak{c}) = 1$.

Example 5.4

V

Let k be a field. For any $\ell \geq 3$, $m \geq n \geq 2$,

$${\mathcal R} = k[[X_1, X_2, \dots, X_\ell]] / \mathrm{I}_2 \left(egin{array}{ccc} X_1^n & X_2 & \cdots & X_{\ell-1} & X_\ell \ X_2 & X_3 & \cdots & X_\ell & X_1^m \end{array}
ight)$$

is an *n*-Goto ring with dim R = 1 and $r(R) = \ell - 1$.

Sally modules and Goto rings

- (A, \mathfrak{m}) a CM local ring with $d = \dim A > 0, \exists K_A, |A/\mathfrak{m}| = \infty, n \ge 0$
- Q a parameter ideal of A with (\$)
- J = I + Q an extended canonical ideal of A
- $\mathcal{B} = \mathcal{F}(Q) \cong A/\mathfrak{m} \otimes_{A/Q} \operatorname{gr}_Q(A) \cong (A/\mathfrak{m})[X_1, X_2, \dots, X_d]$

Fact (GMP, CGKM, Goto-Isobe-Kumashiro-Taniguchi)

- A is Gorenstein $\iff \exists Q \text{ with } (\sharp) \text{ s.t. } S_Q(J) = (0)$
- A is non-Gorenstein AGL $\iff \exists Q \text{ with } (\sharp) \text{ s.t. } S_Q(J) \cong \mathcal{B}(-1)$
- When d = 1, A is 2-AGL $\iff \exists 0 \rightarrow \mathcal{B}(-1) \rightarrow \mathcal{S}_{\mathcal{Q}}(J) \rightarrow \mathcal{B}(-1) \rightarrow 0$
- A is non-Gorenstein GGL $\implies \exists \sqrt{\mathfrak{a}} = m \text{ and } \exists Q \text{ with } (\sharp) \text{ s.t.}$ $\mathcal{S}_{Q}(J) \cong [\mathcal{R}(Q)/\mathfrak{a}\mathcal{R}(Q)] (-1).$

Theorem 6.1

Let Q be a parameter ideal with (\sharp) . Then TFAE for $n \ge 1$.

- (1) A is *n*-Goto with respect to Q.
- (2) $S_Q(J) = \mathcal{R}(Q) [S_Q(J)]_1$ and rank $S_Q(J) = n$.
- (3) $0 \leq \exists \ell < n, \exists s_i \geq 1 \text{ s.t. } n = \sum_{i=0}^{\ell} s_i \text{ and } \mathfrak{m}^{\ell} S_Q(J) \cong \mathcal{B}(-1)^{\oplus s_0},$ and if $\ell > 0, \exists \text{ exact sequences}$

$$\begin{array}{ccc} 0 \to \mathcal{B}(-1)^{\oplus s_0} \to & \mathfrak{m}^{\ell-1} \mathcal{S}_Q(J) \to \mathcal{B}(-1)^{\oplus s_1} \to 0 \\ 0 \to \mathfrak{m}^{\ell-1} \mathcal{S}_Q(J) \to & \mathfrak{m}^{\ell-2} \mathcal{S}_Q(J) \to \mathcal{B}(-1)^{\oplus s_2} \to 0 \\ & \vdots \\ & 0 \to \mathfrak{m} \mathcal{S}_Q(J) \to & \mathcal{S}_Q(J) \to \mathcal{B}(-1)^{\oplus s_\ell} \to 0. \end{array}$$

Corollary 6.2

Suppose that $n \ge 1$ and A is *n*-Goto with respect to Q. Then

•
$$e_2(J) = n$$
 if $d \ge 2$

•
$$e_i(J) = 0$$
 for $3 \le \forall i \le d$, if $d \ge 3$.

Exact sequences and Goto rings

When dim R = 1, recall that c = R : R[K].

- *R* is Gorenstein $\iff R = K \ (\iff R = \mathfrak{c})$
- R is AGL $\iff K/R \cong (R/\mathfrak{m})^{\oplus}$
- R is GGL $\iff K/R \cong (R/\mathfrak{c})^{\oplus}$
- *R* is 2-AGL $\implies K/R \cong (R/\mathfrak{c})^{\oplus} \oplus (R/\mathfrak{m})^{\oplus}$

When dim A = d > 0,

Note that

•
$$\mathfrak{m}^{\ell}\mathcal{S}_Q(J) = (0)$$
 for $\forall \ell \gg 0$

• $\mathfrak{m}^{\ell}S_Q(J) = (0)$ for $\forall \ell \ge n$, if A is *n*-Goto with respect to Q

• $\mathfrak{m}^{n-1}\mathcal{S}_Q(J) \neq (0) \iff \nu(A/\mathfrak{c}) = 1$, if A is *n*-Goto and dim A = 1.

Theorem 7.1

Suppose that $n \ge 1$, A is *n*-Goto with respect to Q, and $\mathfrak{m}^{n-1}S_Q(J) \ne (0)$. Then $\exists \sqrt{\mathfrak{a}_i} = m$ with $\ell_A(A/\mathfrak{a}_i) = i$ and \exists an exact sequence

$$0 \to A \to \mathsf{K}_A \to C \to 0$$
 s.t. $C \cong \bigoplus_{i=1}^n M_i$ and $M_n \neq (0)$

where M_i denotes an Ulrich A-module with respect to a_i for $1 \le \forall i \le n$.

Thank you for your attention.