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Introduction

Question 1.1

Why are there so many Cohen-Macaulay rings which are not Gorenstein?

Problem 1.2

Find new and interesting classes of rings which fill in a gap between Gorenstein
and Cohen-Macaulay rings, so as to stratify Cohen-Macaulay rings.

Problem 1.3

Find new classes of CM rings which may not be Gorenstein, but sufficiently good
next to Gorenstein rings.
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Almost Gorenstein rings

[Barucci-Fröberg, 1997]

· · · one-dimensional analytically unramified local rings

[Goto-Matsuoka-Phuong, 2013]

· · · one-dimensional CM local rings

[Goto-Takahashi-Taniguchi, 2015]

· · · higher-dimensional CM local/graded rings

Generalization of AGL rings

2-almost Gorenstein local rings (Chau-Goto-Kumashiro-Matsuoka)

Generalized Gorenstein local rings (Goto-Kumashiro)

Question 1.4

Can we construct a new theory that can be understood AGL, 2-AGL and GGL
rings in a unified manner?
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Extended canonical ideals

(A,m) a CM local ring with d = dimA > 0, ∃KA, and |A/m| = ∞

I ⊊ A an ideal of A s.t. I ∼= KA

Recall that ∃ a canonical ideal ⇐⇒ Ap is Gorenstein for ∀ p ∈ MinA.

For ideals J and Q with Q ⊆ J,

Q is a reduction of J, if J r+1 = QJ r for ∃ r ≥ 0

redQ(J) = min{r ≥ 0 | J r+1 = QJ r}.

Definition 2.1

(1) A parameter ideal Q = (a1, a2, . . . , ad) of A satisfies the condition (♯), if
a1 ∈ I and Q is a reduction of Q + I .

(2) An ideal J is called an extended canonical ideal of A, if J = I + Q for some
parameter ideal Q = (a1, a2, . . . , ad) satisfying (♯).
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Example 2.2

Let k be a field. For any ℓ ≥ 3, m ≥ n ≥ 2, let

A = k[[X1,X2, . . . ,Xℓ,V1,V2, . . . ,Vℓ−1]]/I2
(

X n
1 X2+V1 ··· Xℓ−1+Vℓ−2 Xℓ+Vℓ−1

X2 X3 ··· Xℓ Xm
1

)
I = (X n

1 ,X2, . . . ,Xℓ−1)A

Q = (X n
1 ,V1, . . . ,Vℓ−1)A.

Then A is a CM local ring admitting the extended canonical ideal J = I + Q.

When d = 1, extended canonical ideals = canonical ideals.

When d ≥ 2, JA′ is a canonical ideal of A′ = A/(a2, a3, . . . , ad).

An extended canonical ideal exists.

There exist integers {ei (J)}0≤i≤d s.t.

ℓA(A/J
n+1) = e0(J)

(
n + d

d

)
−e1(J)

(
n + d − 1

d − 1

)
+· · ·+(−1)ded(J) for ∀n ≫ 0.
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e1(J) ≥ e0(J)− ℓA(A/J)

e1(J) = e0(J)− ℓA(A/J) ⇐⇒ J2 = QJ.

When this is the case,

(1) grJ(A) =
⊕

i≥0 J
i/J i+1 and F(J) =

⊕
i≥0 J

i/mJ i are CM

(2) R(J) =
⊕

i≥0 J
i is CM, if d ≥ 2.

Sally characterized J with e1(J) = e0(J)− ℓA(A/J)+ 1 and e2(J) ̸= 0.

Vasconcelos introduced SQ(J) =
⊕

i≥1 J
i+1/JQ i , recovered Sally’s results,

and made further progress, e.g.,

rankSQ(J) = e1(J)− e0(J) + ℓA(A/J).

Goto, Nishida, and Ozeki established the theory of rankSQ(J) = 1.

Whereas they considered any m-primary ideals, we focus on extended canonical
ideals and raise the rank of the Sally modules.
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Goto rings

(A,m) a CM local ring with d = dimA > 0, ∃KA, and |A/m| = ∞

I ⊊ A an ideal of A s.t. I ∼= KA, and n ≥ 0 an integer

Definition 3.1

Let Q = (a1, a2, . . . , ad) be a parameter ideal of A. We say that A is an n-Goto
ring with respect to Q, if

a1 ∈ I , J3 = QJ2, and ℓA(J
2/QJ) = n

where J = I + Q. The ring A is called n-Goto, if ∃ a parameter ideal Q of A s.t.
A is n-Goto with respect to Q.

A is 0-Goto ⇐⇒ A is Gorenstein

A is 1-Goto ⇐⇒ A is non-Gorenstein AGL

A is 2-Goto ⇐⇒ A is 2-AGL, provided d = 1

A is ℓA(A/a)-Goto ⇐= A is GGL with respect to a, where
√
a = m.
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Example 3.2

Let k be a field.

(1) k[[t3, t3n+1, t3n+2]] is n-Goto and is an integral domain.

(2) k[[t3, t3n+1, t3n+2]]×k k[[t]] is n-Goto, reduced, but not an integral domain.

(3) k[[t3, t3n+1, t3n+2]]⋉ k[[t]] is n-Goto and is not reduced.

Recall that x ∈ J is super-regular, if xt ∈ R(J) is a NZD on grJ(A).

Theorem 3.3

Suppose that d ≥ 2. Let J = I + Q be an extended canonical ideal of A and set
q = (a2, a3, . . . , ad). Let x ∈ q \mq be super-regular. Then TFAE.

(1) A is an n-Goro ring with respect to Q.

(2) A/(x) is an n-Goto ring with respect to Q/(x).
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Example 3.4

Let k be a field. For any ℓ ≥ 3, m ≥ n ≥ 2,

A = k[[X1,X2, . . . ,Xℓ,V1,V2, . . . ,Vℓ−1]]/I2
(

X n
1 X2+V1 ··· Xℓ−1+Vℓ−2 Xℓ+Vℓ−1

X2 X3 ··· Xℓ Xm
1

)
is an n-Goto ring with dimA = ℓ and r(A) = ℓ− 1.

(A1,m1) a CM local ring with dimA1 = d

φ : A → A1 a flat local map s.t. A1/mA1 is Gorenstein

Q a parameter ideal of A with (♯)

Then IA1 is a canonical ideal of A1 and QA1 is a parameter ideal of A1 with (♯).

Theorem 3.5

TFAE.

(1) A1 is n-Goto with respect to QA1.

(2) ∃m > 0 s.t. m | n, A is m-Goto with respect to Q, and ℓA1(A1/mA1) =
n
m .
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Example 3.6 (cf. Chau-Goto-Kumashiro-Matsuoka)

Let A1 = A[X ]/(X n + α1X
n−1 + · · ·+ αn) (n ≥ 1, αi ∈ m). Then

A1 is a flat local A-algebra with m1 = mA1 + XA1

A1/mA1 = (A/m)[X ]/(X n) is an Artinian Gorenstein ring

ℓA1(A1/mA1) = n.

Hence, if n ≥ 2 is a prime integer, then

A1 is n-Goto with respect to QA1 ⇐⇒ A is non-Gorenstein AGL

where Q is a parameter ideal of A with (♯).
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One-dimensional Goto rings

(R ,m) a CM local ring with dimR = 1, ∃KR , and |R/m| = ∞

I a canonical ideal of R , n ≥ 0 an integer

Q = (a) a parameter ideal of R s.t. Q is a reduction of I

K =
I

a
=

{x

a

∣∣∣ x ∈ I
}
⊆ Q(R)

K ∼= KR and R ⊆ K ⊆ R ⊆ Q(R)

R is n-Goto ⇐⇒ K 3 = K 2 and ℓR(K
2/K ) = n

Example 4.1

The ring R = k[[H]] = k[[th | h ∈ H]] (⊆ k[[t]]) is an n-Goto ring, where

H = ⟨3, 3n + 1, 3n + 2⟩ (n ≥ 1)

H = ⟨e, {en − e + i}3≤i≤e−1, en + 1, en + 2⟩ (n ≥ 2, e ≥ 4).
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We set R I =
⋃

n≥0 [I
n : I n] for a regular ideal I of R .

Theorem 4.2

Suppose that R has minimal multiplicity, Rm is a local ring, and R/m ∼= Rm/n,
where n denotes the maximal ideal of Rm. Then TFAE for n ≥ 1.

(1) R is an n-Goto ring

(2) Rm is an (n − 1)-Goto ring.

Example 4.3

Let k be a field. Then

R = k[[t5, t13, t14, t16, t17]] is 3-Goto.

R1 = Rm =
⋃

n≥0 [m
n : mn] = m : m = k[[t5, t8, t9, t11, t12]] is 2-Goto.

R2 = (R1)
m1 =

⋃
n≥0 [m

n
1 : mn

1] = m1 : m1 = k[[t3, t4, t5]] is 1-Goto.

R3 = (R2)
m2 =

⋃
n≥0 [m

n
2 : mn

2] = m2 : m2 = k[[t]] = R is 0-Goto.
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(S , n) a CM local ring with dim S = 1 and k = R/m = S/n

f : R → k , g : S → k canonical maps

R ×k S = {(a, b) ∈ R × S | f (a) = g(b)} ⊆ R × S

Then R ×k S is a CM local ring with dim(R ×k S) = 1. Moreover

R ×k S is Gorenstein ⇐⇒ R and S are DVRs.

Theorem 4.4

Suppose that ∃K(R×kS) and Q(R ×k S) is Gorenstein. Then TFAE for n ≥ 2.

(1) R ×k S is an n-Goto ring.

(2) One of the following conditions holds.

(i) R is Gorenstein and S is n-Goto.
(ii) R is n-Goto and S is Gorenstein.
(iii) R is p-Goto and S is q-Goto for ∃ p, q > 0 s.t. n + 1 = p + q.

Hence, if R is n-Goto and S is 2-Goto, then R ×k S is (n + 1)-Goto.
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Recall that R is n-Goto ⇐⇒ K 2 = K 3 and ℓR(K
2/K ) = n.

Lemma 4.5

Suppose r(R) = 2. For each n ≥ 1, we have

R is n-Goto ⇐⇒ K 2 = K 3 and ℓR(K/R) = n.

R = k[[ta1 , ta2 , ta3 ]], where 0 < a1, a2, a3 ∈ Z s.t. gcd(a1, a2, a3) = 1

R is not a Gorenstein ring

φ : k[[X ,Y ,Z ]] → R the k-algebra map s.t.

φ(X ) = ta1 , φ(Y ) = ta2 , and φ(Z ) = ta3

Then
Kerφ = I2

(
Xα Y β Zγ

Y β′
Zγ′

Xα′

)
for ∃α, β, γ, α′, β′, γ′ > 0.

By setting b = a1α− a2β
′ (= a2β − a3γ

′ = a3γ − a1α
′), we get

ℓR(K/R) =

{
αβγ (b < 0)

α′β′γ′ (b > 0)
.
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Theorem 4.6

Suppose that R is not Gorenstein. Then TFAE for n ≥ 1, where H = ⟨a1, a2, a3⟩.

(1) R = k[[H]] is an n-Goto ring.

(2) 3 · |b| ∈ H, and n = αβγ (resp. n = α′β′γ′) if b < 0 (resp. b > 0).

Example 4.7

Let R = k[[t7, t10, t22]]. The k-algebra map φ : k[[X ,Y ,Z ]] → R defined by

φ(X ) = t10, φ(Y ) = t7, and φ(Z ) = t22

induces
R ∼= k[[X ,Y ,Z ]]/I2

(
X 2 Y 2 Z
Y 4 Z X 3

)
.

Then b = a1α− a2β
′ = 10 · 2− 7 · 4 = −8 < 0. Hence, 3 · |b| = 24 ∈ H and

ℓR(K/R) = 2 · 2 · 1 = 4,

so that R is a 4-Goto ring.
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Corollary 4.8

Suppose that e(R) = 3 and R has minimal multiplicity. Then TFAE for n ≥ 1,
where H = ⟨a1, a2, a3⟩.

(1) R = k[[H]] is an n-Goto ring.

(2) H = ⟨3, 2n + α, n + 2α⟩ for ∃α ≥ n + 1 s.t. α ̸≡ n mod 3.

When this is the case,

R ∼= k[[X ,Y ,Z ]]/I2
(
X n Y Z
Y Z Xα

)
or R ∼= k[[X ,Y ,Z ]]/I2

(
Xα Y Z
Y Z X n

)
.
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Minimal free resolutions

(T , n) a RLR with dimT = ℓ ≥ 3, a ⊊ T an ideal of T s.t. a ⊆ n2, n ≥ 2

R = T/a is a CM local ring with dimR = 1, m = n/a

K a fractional canonical ideal of R , c = R : R[K ]

Suppose R is an n-Goto ring and v(R/c) = 1. As ℓR(R/c) = ℓR(K
2/K ) = n,

∃ x1, x2, . . . , xℓ ∈ m s.t. m = (x1, x2, . . . , xℓ) and c = (xn1 , x2, . . . , xℓ).

By setting Ii = (x i1, x2, . . . , xℓ) (1 ≤ i ≤ n), we have

R : K = c = In ⊊ In−1 ⊊ · · · ⊊ I1 = m and

K/R ∼=
n⊕

i=1

(R/Ii )
⊕ℓi for ∃ ℓn > 0, ∃ ℓi ≥ 0 (1 ≤ i ≤ n − 1).

Write K = R +
∑n

i=1

∑ℓi
j=1 R · fij s.t. (R/Ii )

⊕ℓi ∼=
∑ℓi

j=1(R/c) · fij in K/R .

Choose Xi ∈ n s.t. xi = Xi in R .
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Theorem 5.1

If R =T/a is n-Goto and v(R/c) = 1, then F1
M−→ F0

N−→ K → 0 gives a minimal

free presentation of K, where N = [−1 fn1···fnℓn fn−1,1···fn−1,ℓn−1
··· f11···f1ℓ1 ] and

M=



a
(n)
11 a

(n)
12 ···a(n)

1ℓ
··· a

(n)
ℓn1

a
(n)
ℓn2

···a(n)
ℓnℓ

··· a
(1)
11 a

(1)
12 ···a(1)

1ℓ
··· a

(1)
ℓn1

a
(1)
ℓn2

···a(1)
ℓnℓ

c1c2···cq
Xn
1 X2···Xℓ 0

. . . 0
Xn
1 X2···Xℓ

Xn−1
1 X2···Xℓ

...
. . .

Xn−1
1 X2···Xℓ

. . .
X1X2···Xℓ

. . . 0
X1X2···Xℓ 0


Moreover, one has

a =
n∑

i=1

ℓi∑
j=1

I2

(
a
(i)
j1 a

(i)
j2 ··· a

(i)
jℓ

X i
1 X2 ··· Xℓ

)
+ (c1, c2, . . . , cq).
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Example 5.2

Let φ : T = k[[X ,Y ,Z ,W ]] → R = k[[t4, t11, t13, t14]] be the k-algebra map s.t.

φ(X ) = t4, φ(Y ) = t11, φ(Z ) = t13, and φ(W ) = t14.

Then K = R + Rt + Rt3 is a fractional canonical ideal of R . Hence, K 2 = K 3

and ℓR(K
2/K ) = 3, so that R is a 3-Goto ring.

The minimal free presentation of K is given by F1
M−→ F0 −→ K −→ 0, where

M =

[
Z −X 3 −W −XY Y W X 4 XZ
X 3 Y Z W 0 0 0 0
0 0 0 0 X 2 Y Z W

]
.

Hence
Kerφ = I2

(
Z −X 3 −W −XY
X 3 Y Z W

)
+ I2

(
Y W X 4 XZ
X 2 Y Z W

)
.
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Theorem 5.3

Let X1,X2, . . . ,Xℓ ∈ n be a regular sop of T and assume K has a presentation of
the form

F1
M−→ F0

N−→ K −→ 0

where M and N are the matrices of the form stated in Theorem 5.1, satisfying

a
(n)
ij ∈ Jn (1 ≤ i ≤ ℓn, 1 ≤ j ≤ ℓ)

a
(k)
ij ∈ Jn (1 ≤ k ≤ n − 1, 1 ≤ i ≤ ℓk , 2 ≤ j ≤ ℓ)

a
(k)
i1 ∈ Jk (1 ≤ k ≤ n − 1, 1 ≤ i ≤ ℓk)

where Ji = (X i
1,X2, . . . ,Xℓ) (1 ≤ i ≤ n). Then R is n-Goto and v(R/c) = 1.

Example 5.4

Let k be a field. For any ℓ ≥ 3, m ≥ n ≥ 2,

R = k[[X1,X2, . . . ,Xℓ]]/I2
(

X n
1 X2 ··· Xℓ−1 Xℓ

X2 X3 ··· Xℓ Xm
1

)
is an n-Goto ring with dimR = 1 and r(R) = ℓ− 1.
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Sally modules and Goto rings

(A,m) a CM local ring with d = dimA > 0, ∃KA, |A/m| = ∞, n ≥ 0

Q a parameter ideal of A with (♯)

J = I + Q an extended canonical ideal of A

B = F(Q) ∼= A/m⊗A/Q grQ(A)
∼= (A/m)[X1,X2, . . . ,Xd ]

Fact (GMP, CGKM, Goto-Isobe-Kumashiro-Taniguchi)

A is Gorenstein ⇐⇒ ∃Q with (♯) s.t. SQ(J) = (0)

A is non-Gorenstein AGL ⇐⇒ ∃Q with (♯) s.t. SQ(J) ∼= B(−1)

When d = 1, A is 2-AGL ⇐⇒ ∃ 0 → B(−1) → SQ(J) → B(−1) → 0

A is non-Gorenstein GGL =⇒ ∃
√
a = m and ∃Q with (♯) s.t.

SQ(J) ∼= [R(Q)/aR(Q)] (−1).
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Theorem 6.1

Let Q be a parameter ideal with (♯). Then TFAE for n ≥ 1.

(1) A is n-Goto with respect to Q.

(2) SQ(J) = R(Q) [SQ(J)]1 and rankSQ(J) = n.

(3) 0 ≤ ∃ ℓ < n, ∃ si ≥ 1 s.t. n =
∑ℓ

i=0 si and mℓSQ(J) ∼= B(−1)⊕s0 ,

and if ℓ > 0, ∃ exact sequences

0 → B(−1)⊕s0 → mℓ−1SQ(J) → B(−1)⊕s1 → 0

0 → mℓ−1SQ(J) → mℓ−2SQ(J) → B(−1)⊕s2 → 0
...

0 → mSQ(J) → SQ(J) → B(−1)⊕sℓ → 0.

Corollary 6.2

Suppose that n ≥ 1 and A is n-Goto with respect to Q. Then

e2(J) = n if d ≥ 2

ei (J) = 0 for 3 ≤ ∀ i ≤ d, if d ≥ 3.
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Exact sequences and Goto rings

When dimR = 1, recall that c = R : R[K ].

R is Gorenstein ⇐⇒ R = K (⇐⇒ R = c )

R is AGL ⇐⇒ K/R ∼= (R/m)⊕

R is GGL ⇐⇒ K/R ∼= (R/c)⊕

R is 2-AGL =⇒ K/R ∼= (R/c)⊕ ⊕ (R/m)⊕

When dimA = d > 0,

A is AGL ⇐⇒ ∃ 0 → A → KA → C → 0

s.t. C is an Ulrich A-module with respect to m

A is GGL =⇒ ∃
√
a = m and ∃ 0 → A → KA → C → 0

s.t. C is an Ulrich A-module with respect to a

Naoki Endo Extended canonical ideals and Goto rings 23 / 25



Introduction Extended canonical ideals Goto rings 1-dimensional case Minimal free resol. Sally modules Exact sequences

Note that

mℓSQ(J) = (0) for ∀ ℓ ≫ 0

mℓSQ(J) = (0) for ∀ ℓ ≥ n, if A is n-Goto with respect to Q

mn−1SQ(J) ̸= (0) ⇐⇒ v(A/c) = 1, if A is n-Goto and dimA = 1.

Theorem 7.1

Suppose that n ≥ 1, A is n-Goto with respect to Q, and mn−1SQ(J) ̸= (0).

Then ∃√ai = m with ℓA(A/ai ) = i and ∃ an exact sequence

0 → A → KA → C → 0 s.t. C ∼=
n⊕

i=1

Mi and Mn ̸= (0)

where Mi denotes an Ulrich A-module with respect to ai for 1 ≤ ∀ i ≤ n.
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Thank you for your attention.
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